锐线光源需要满足的条件:
1、光源的发射线与吸收线的中心频率完全一致;
2、发射线的半宽度小于吸收线的半宽度,一般为吸收线半宽度的1/5~1/10。
理想的锐线光源--空心阴极灯:用一个与待测元素相同的纯金属制成。由于灯内是低电压,压变宽基本消除;灯电流仅几毫安,温度很低,热变宽也很小。
区别常用的连续光源是氙弧灯,常用的锐线光源是高强度空心阴极灯、无极放电灯、激光等。连续光源稳定,操作简便,寿命长,能用于多元素同时分析,但检出限较差。锐线光源辐射强度高,稳定,可得到更好的检出限。
但在过去的几十年中,原子吸收使用的光源主要是空心阴极灯,即锐线光源原子吸收。锐线光源有着众所周知的诸多优点,但因每分析一个元素就要更换一个元素灯,再加上灯工作电流、波长等参数的选择和调节,使原子吸收分析的速度、信息量和使用的方便性等方面受到了限制。分析速度慢和依赖空心阴极灯的固有特性成了原子吸收光谱的致命弱点。克服这些缺点的最有效的方法,就是采用连续光源进行多元素测定。连续光源原子吸收成为分析工作者的一个长期梦想。
发展历程早在1952 年,世界原子吸收光谱分析的奠基人澳大利亚科学家Alan Walsh 先生在提出原子吸收光谱概念时,就首先考虑过用连续光源,但用连续光源要求单色器的分辨率达到2pm 水平的分辨率,这在当时的技术条件下是不可能的,所以只能采用锐线光源(通常为空心阴极灯),并一直沿用至今。1968 年Walsh 先生又在第十三届国际光谱学术会上作了"多元素同时分析原子吸收光谱法"的演讲。连续光源无疑是多元素同时测定的最佳选择。世界各地的原子吸收仪器研究者和设计者也一直在致力于用一个光源代替70 余种元素灯,对连续光源原子吸收的研究坚持不懈地进行了几十年。
要实现连续光源原子吸收,必须攻克在光源、单色器、和检测器等方面的技术难关。
contrAA 采用特制的高聚焦短弧氙灯作为连续光源,该灯是一个气体放电光源,灯内充有高压氙气,在高频高电压激发下形成高聚焦弧光放电,辐射出从紫外线到近红外的强连续光谱。能量比一般氙灯大10-100 倍,电极距离<1mm,发光点只有200μm, 发光点温度10000KT。这样,采用一个连续光源取代了传统的所有空心阴极灯,一只氙灯即可满足全波长(189~900 nm)所有元素的原子吸收测定需求,并可以选择任何一条谱线进行分析。仪器提供的光谱信息非常丰富,改善了分析结果的准确性和测量精度。光源在启动后即能达到最大光输出,这是该型原子吸收光谱仪不需要预热,开机后即可测量的主要原因。多元素顺序测定时,可测量元素周期表中七十余个元素,还可以测量更多的元素(如放射性元素),并为研究原子光谱的机理提供了新的仪器工具,开创性地实现了无需锐线光源的多元素原子吸收光谱分析。